ELECTRIFYING INNOVATION & INSPIRING TO HIGHER PEAKS

2023 Annual Conference

June 5–7, 2023 Crowne Plaza Desmond Hotel Albany, New York

Application of Machine Learning and Geographical Information Systems in Home Health Care

Presenters:

David Patrishkoff M.S. LSSMBB Nova Southeastern University, Fort Lauderdale, FL

Arif Rana Ph.D., Ed.S., M.S., M.P.H., M.A., M.P.A. SUNY Polytechnic Institute, Utica, NY

What is Health Informatics?

ML and AI can significantly support all these segments

HIT and HIM Overlaps in Health Informatics

HIT is only taught at the Associate degree level

Applied Educational Systems, Inc. 2012

Session Objectives

- 1. Describe the Home Healthcare Challenge
- 2. Show Geospatial visualizations for Hospital Star ratings and Home Health Care (HHC) performances
- 3. Describe how Machine Learning and AI technology can provide real-time personalized medical advice to patients and their caregivers
- 4. Describe a No-Nonsense approach for high-quality care in HHC and Hospitals

1. Describe the Home Healthcare Challenge

2021 US Census Estimates

AI Image created by DALL-E

- There are almost 56 million adults in the United States that are 65 or older, which is the fastest-growing age group.
- 90% of them want to safely "age in place."
- Approximately 4.5 million patients receive home health care services (HHC) per annum
- 8.3 million residents reside in long-term care facilities.

People are Living Longer but encounter Challenges in Sustaining a High Quality of Life

The Opportunity for Machine Learning (ML) and AI in Home Health / Chronic Care

2. Show Geospatial visualizations for Hospital Star ratings and Home Health Care (HHC) performances

The Five Measure Groups used to Calculate Hospital Star Ratings

- 1. Mortality*
- 2. Safety of care*
- 3. Readmissions
- 4. Patient experience
- 5. Timely and effective care

<u>Note</u>: If any of the above 5 measures are missing, as for 2229 of 5318 total hospitals, the overall star rating is not calculated for that specific hospital

*Medical errors are the 3rd leading cause of death in the USA – Per John Hopkins

Average Hospital Star Rating with Confidence Intervals (CIs) by State

Non-overlapping 95th percentile CIs identify statistical significance

Geospatial Visualizations: A mix between Analytical and Creative Visualizations

AI Images created by DALL-E

Where are the 5318 Hospitals in the USA Located?

Highest Density of the 5318 Hospitals is shown in Red

Chart created with Maptitude Software

Number of Hospitals per State

Chart created with JMP Software from SAS

3088 of the 5318 Hospitals in the US currently have a CMS calculated Star Ratings

Hospital Star Ratings vary greatly by State

The Maximum Hospital Star ratings per State.

Median Hospital Star Rating per State

Charts created with JMP Software from SAS

Hospital Star Ratings vary greatly by State

The lowest Hospital Star rating per State. All but 19 states have a hospital with only 1-star rating.

The Range of Hospital Star ratings per State. all but 19 states have a star rating range of 4.

Charts created with JMP Software from SAS

3D Geo Displays uniquely identify different Population Datasets of Interest

3D Geospatial Display Styles

Hospital Density and Star Ratings for the 184 NY Hospitals (132 are Star rated)

Long Island Area- New York State Hospital Star Ratings

Home Health Star Ratings (CMS.gov)

- The Centers for Medicare & Medicaid Services (CMS) built the <u>Care</u>
 <u>Compare</u> website at <u>Medicare.gov</u> as a key tool to help consumers choose
 the best health care provider. Care Compare provides tools like "star ratings"
 that summarize Hospital and HHC provider performance measures.
- There are two types of home health star ratings:
 - **1.Quality of Patient Care (QoPC) Star Rating** is based on **7 OASIS performance measures** from Medicare claims data. CMS continues to update them quarterly based on new data posted on Care Compare from 7831 of 11,646 HHC Providers.
 - 2.Patient Survey Star Ratings are based on 20 questions in four groupings of questions for patients from 5281 of 11,646 HHC Providers (<u>https://homehealthcahps.org/</u>). 994,525 total Survey responses were captured.

The 7 measures that are part of the Quality of Patient Care Star Rating

- 1. Timely Initiation of Care
- 2. Improvement in Ambulation
- 3. Improvement in Bed Transferring
- 4. Improvement in Bathing
- 5. Improvement in Shortness of Breath
- 6. Improvement in Management of Oral Medications
- 7. Acute Care Hospitalization

Data file used for analysis: HH_Provider_Apr2023.xlsx

QoPC Star Rating	# of HHC Providers		
NA	3815		
1	156		
1.5	542		
2	791		
2.5	1081		
3	1235		
3.5	1245		
4	1285		
4.5	1006		
5	490		

Average Quality of Patient Care Star Ratings with Confidence Intervals (CIs) by State

Quality of Patient Care Star Rating by State

The HHC Patient Survey Star Ratings include four of the measures reported on Care Compare

- 1. Care of Patients (Survey items: Q9, Q16, Q19, and Q24)
- 2. Communication Between Providers and Patients (Survey items: Q2, Q15, Q17, Q18, Q22, and Q23)
- 3. Specific Care Issues (Survey items: Q3, Q4, Q5, Q10, Q12, Q13, and Q14)
- 4. Overall Rating of Care Provided by the Home Health Agency (Q20)

all information about the Patient Survey Star Ratings on the <u>HHCAHPS</u> website. HHCAHPS Survey results are updated each calendar year quarter.

The Average HHC Provider Patient Survey Star Ratings by State

Top 5 US States by Population 1.California — 40,223,504 2.Texas — 30,345,487 3.Florida — 22,359,251 4.New York — 20,448,194 5.Pennsylvania — 13,092,796

Ratings calculated from 5281 (45%) of 11,646 HHC Providers

Comparing the Results for 3 Different Star Ratings by State

20° N

120° W

100° W

90° W

80° W

100° W

90° W

80° W

3. Describe how Machine Learning and AI technology can provide realtime personalized medical advice to patients and their caregivers

What is Machine Learning (ML)?

- Machine Learning (ML) is a subset of Artificial Intelligence (AI) that enables machines to learn from data and make predictions or decisions on new data it has not yet seen
 - Training: This is the process by which a ML model learns from data
 - Models: Models are mathematical representations of a real-world process
 - Algorithm: An algorithm is a procedure that is followed in order to create a model
 - Prediction: Prediction here doesn't refer to the future, but for unseen data
 - Learning: Recognizing patterns and making intelligent decisions from the input data
 - Model Evaluation: Testing how well the model was trained using new unseen data
 - Generalization: The model's ability to offer predictions on previously unseen data

What is Artificial Intelligence (AI)?

- Artificial Intelligence (AI) is a branch of computer science that aims to *mimic* human intelligence.
- Two Main Types of AI:

1.Narrow AI: AI that's designed to perform a single task, like recommending songs on Spotify or answering questions on Siri. This is the type of AI is everywhere.

2.General AI: AI that can understand, learn, adapt, and implement knowledge in a wide range of tasks. Currently, General AI is largely theoretical and doesn't exist yet.

Some Examples of Potential Narrow AI HC Coach Apps with human vitals tracking and tailored 24/7 Support

Narrow AI apps will merge over time to create a Powerful Personal General AI Health Coach / Assistant

No-Code Data Science (ML/AI) is Possible

NO-CODE DATA SCIENCE

Advanced Analytics, Visualizations, Machine Learning, and AI with Open-Source Software

David Patrishkoff Robert E Hoyt

- No-Code open-source Software (Orange) can apply ML to tabular data, text mining, and image analysis
- Learn Predictive modeling with no programming / coding required
- Free monthly workshops, as we complete our 500-page book this summer
- Certification levels available in the Fall of 2023

Our 8-Step DISCOVER Process to Successfully Master Predictive Modeling

• Supported by comprehensive instructions for each step

Orange accesses 200+ Python Libraries with No-Code Visual Programming (widgets)

- Individual Orange widgets are dedicated to data preparation, visualizations, advanced analytics, and predictive analytics tasks.
- They can be arranged into many unique workflows to facilitate unique analysis tasks that are documented and repeatable for new datasets.

Orange Predictive Modeling for the Quality of Patient Care Star Rating, Predictor Ranking, and Scatter Plot for the Top Predictors

The top to rated predictive Aig											
Model	MSE	RMSE	MAE	R2	CVRMSE						
AdaBoost (1)	0.006	0.077	0.006	0.994	2.144						
Gradient Boosting_Catboost (1)	0.007	0.087	0.039	0.992	2.400						
GB xgboost	0.008	0.090	0.018	0.991	2.488						
kNN	0.008	0.090	0.014	0.991	2.493						
Random Forest (1)	0.008	0.090	0.016	0.991	2.505						
Tree	0.009	0.096	0.013	0.990	2.673						
GB Scikit learn	0.026	0.162	0.097	0.972	4.491						
LR Ridge_A1	0.079	0.281	0.249	0.916	7.779						
LR Ridge_A0.1	0.079	0.281	0.249	0.916	7.779						

The top 10 rated predictive Algorithms

The Top Ranked Survey Question Groups

		#	Univreg.
1	N Star Rating for health team gave care in a professional way		15063.839
2	N Star Rating for health team communicated well with them		10729.495
3	N Star Rating for how patients rated overall care from agency		10647.592
4	N Star Rating team discussed medicines, pain, and home safety		7350.815

Viewing 3D Data Landscapes: The Top 2 Predictors versus the HHC Quality of Patient Care Star Rating

Orange Predictor Ranking for 17 Predictors of HHC **Overall Patient Survey Star Ratings**

	👪 Ra	nk - Orange		>	\times Only 5 of the
			#	Univreg.	
	1	N How often patients got better at walking or moving around		18339.119	17 Predictors
	2	N How often patients got better at bathing		18195.407	
	3	N How often patients got better at taking their drugs correctly by mouth		16261.470	have any
	4	N How often patients got better at getting in and out of bed		11511.286	significant
	5	N How often patients' breathing improved		10915.835	Jightheant
	6	N How often the home health team began their patients' care in a timely manner		1909.951	impact on
	7	Now often the home health team determined whether patients received a flu shot for the current flu season		652.273	
	8	N How often physician-recommended actions to address medication issues were completely timely		550.265	The HHC
	< 9	Discharge to Community Observed Rate		526.855	Overall
	10	N Changes in skin integrity post-acute care: pressure ulcer/injury		406.003	
	11	N How often the home health team taught patients (or their family caregivers) about their drugs		329.246	Patient
	12	N How often home health patients had to be admitted to the hospital		237.945	Currier Chan
	13	N Application of Percent of Long Term Care Hospital Patients with an Admission and Discharge Functional Assessment and a Care Plan that Addresses Function		159.641	Survey Star
	14	N Percent of Residents Experiencing One or More Falls with Major Injury		46.447	Ratings
l	15	N Potentially Preventable Readmissions Observed Rate		40.909	
	16	N How much Medicare spends on an episode of care at this agency, compared to Medicare spending across all agencies nationally		34.051	
	17	N How often patients receiving home health care needed urgent, unplanned care in the ER without being admitted		12.468	
- 1 C					

≡ ? 🗎

Orange Predictive Modeling Scatter Plot for the Top 3 Predictors of HHC Overall Patient Survey Star Ratings

Scatter Plot displaying information from the Top 3 Predictors

4. Describe a No-Nonsense approach for high-quality care in HHC and Hospitals

John Hopkins endorsed Case Study Story

Handbook of Perioperative and Procedural Patient Safety

> EDITED BY JUAN A. SANCHEZ, MD ROBERT S. D. HIGGINS, MD PAULA S. KENT, DRPH, RN

- Lessons Learned from a perioperative safety and quality change management model
- A case study for applying a Hybrid Process Improvement method to Improve low hospital star ratings and patient safety issues

Hybrid Process Improvement method to Improve low Hospital Star Ratings

High Reliability Organizations

Lean Six Sigma Process Excellence

Cultural Risk Mitigation

- The best strategies can be incapacitated with a self-destructing organizational culture
- Hybrid continuous improvements provide insights and address problems from multiple perspectives

Organizational Cascading SWOT Analysis

 High Quality and safe patient care is only achieved when SWOT analysis is carried out at all levels of the organizational cascade and feedback loops

Conclusion

- 1. Advanced No-Code analytics and Geospatial analysis will be become essential skills for all HIM professionals
- 2. US hospital and home health care provider ratings vary greatly
- 3. Healthcare organizations need to put a higher priority of process excellence, patient safety, and quality care
- 4. Patients should guard against substandard care providers –AL can help
- 5. Provided with nationwide data, ML and AI can offer caregivers and patients with tips, motivations, and valuable second opinions
- 6. In time, ML and AI could serve as valuable personal health coaches

Any Questions?

Contact Information:

David Patrishkoff: <u>dpatrish@nova.edu</u> Arif Rana: <u>ranaa@sunypoly.edu</u>

ELECTRIFYING INNOVATION & INSPIRING TO HIGHER PEAKS

Thank You!

A Summary Explanation of how to Conduct Successful Predictive Modeling

Assuming that a high volume of relevant and accurate data has been collected, cleaned, prepped, feature engineered, dummy encoded with high VIFs eliminated, and otherwise 100% readied for predictive modeling, follow these additional steps:

- 1. Determine the best method to use for your training and test data split
- 2. Conduct model screening with every possible algorithm and algorithm option
- 3. Optimize the model's performance with hyperparameter optimization, possible threshold shifting, and ensemble model building
- 4. Use specific model performance metrics to determine the best model
- 5. Rank the most important predictor variables and explain them to stakeholders
- 6. Use that best model to predict outcomes for new patients

